Tanshinone IIA and Cryptotanshinone Prevent Mitochondrial Dysfunction in Hypoxia-Induced H9c2 Cells: Association to Mitochondrial ROS, Intracellular Nitric Oxide, and Calcium Levels

نویسندگان

  • Hyou-Ju Jin
  • Chun-Guang Li
چکیده

The protective actions of tanshinones on hypoxia-induced cell damages have been reported, although the mechanisms have not been fully elucidated. Given the importance of nitric oxide (NO) and reactive oxygen species (ROS) in regulation of cell functions, the present study investigated the effects of two major tanshinones, Tanshinone IIA (TIIA) and cryptotanshinone (CT), on hypoxia-induced myocardial cell injury and its relationships with intracellular NO and ROS, calcium, and ATP levels in H9c2 cells. Chronic hypoxia significantly reduced cell viability which accompanied with LDH release, increase in mitochondrial ROS, intracellular NO and calcium levels, decrease in superoxide dismutase (SOD) activity, and cellular ATP contents. TIIA and CT significantly prevented cell injury by increasing cell viability and decreasing LDH release. The protective effects of tanshinones were associated with reduced mitochondrial superoxide production and enhanced mitochondrial SOD activity. Tanshinones significantly reduced intracellular NO and Ca(2+) levels. ATP levels were also restored by TIIA. These findings suggest that the cytoprotective actions of tanshinones may involve regulation of intracellular NO, Ca(2+), ATP productions, mitochondrial superoxide production, and SOD activity, which contribute to their actions against hypoxia injuries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TanshinoneIIA and Cryptotanshinone Protect against Hypoxia-Induced Mitochondrial Apoptosis in H9c2 Cells

Mitochondrial apoptosis pathway is an important target of cardioprotective signalling. Tanshinones, a group of major bioactive compounds isolated from Salvia miltiorrhiza, have been reported with actions against inflammation, oxidative stress, and myocardial ischemia reperfusion injury. However, the actions of these compounds on the chronic hypoxia-related mitochondrial apoptosis pathway have n...

متن کامل

Tanshinone IIA Inhibits Glutamate-Induced Oxidative Toxicity through Prevention of Mitochondrial Dysfunction and Suppression of MAPK Activation in SH-SY5Y Human Neuroblastoma Cells

Glutamate excitotoxicity is associated with many neurological diseases, including cerebral ischemia and neurodegenerative diseases. Tanshinone IIA, a diterpenoid naphthoquinone from Salvia miltiorrhiza, has been shown to suppress presynaptic glutamate release, but its protective mechanism against glutamate-induced neurotoxicity is lacking. Using SH-SY5Y human neuroblastoma cells, we show here t...

متن کامل

Protective Effect of Boerhaavia diffusa L. against Mitochondrial Dysfunction in Angiotensin II Induced Hypertrophy in H9c2 Cardiomyoblast Cells

Mitochondrial dysfunction plays a critical role in the development of cardiac hypertrophy and heart failure. So mitochondria are emerging as one of the important druggable targets in the management of cardiac hypertrophy and other associated complications. In the present study, effects of ethanolic extract of Boerhaavia diffusa (BDE), a green leafy vegetable against mitochondrial dysfunction in...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Suppression of Stim1 reduced intracellular calcium concentration and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cells

OBJECTIVE Previous studies have demonstrated Stromal interaction molecule 1 (STIM1)-mediated store-operated Ca2+ entry (SOCE) contributes to intracellular Ca2+ accumulation. The present study aimed to investigate the expression of STIM1 and its downstream molecules Orai1/TRPC1 in the context of myocardial ischemia/reperfusion injury (MIRI) and the effect of STIM1 inhibition on Ca2+ accumulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013